miércoles, 7 de diciembre de 2011

Bibliografia de Leonhard Paul Euler



Leonhard Paul Euler  (Basilea, Suiza, 15 de abril de 1707 - San Petersburgo, Rusia, 18 de septiembre de 1783).

Conocido como Leonhard Euler, fue un matemático y físico suizo. Se trata del principal matemático del siglo XVIII y uno de los más grandes de todos los tiempos.

Contribución a las matemáticas y otras aéreas científicas.

Introdujo la notación moderna de las funciones trigonométricas, la letra e como base del logaritmo natural o neperiano (el número e es conocido también como el número de Euler), la letra griega Σ como símbolo de los sumatorios y la letra i para hacer referencia a la unidad imaginaria. El uso de la letra griega π para hacer referencia al cociente entre la longitud de la circunferencia y la longitud de su diámetro también fue popularizado por Euler, aunque él no fue el primero en usar ese símbolo.

Euler definió la constante matemática conocida como número e como aquel número real tal que el valor de su derivada (la pendiente de su línea tangente) en la función f(x) = ex en el punto x = 0 es exactamente 1. La función ex es también llamada función exponencial y su función inversa es el logaritmo neperiano, también llamado logaritmo natural o logaritmo en base e.
El número e puede ser representado como un número real en varias formas: como una serie infinita, un producto infinito, una fracción continua o como el límite de una sucesión. La principal de estas representaciones, particularmente en los cursos básicos de cálculo, es como el límite:

Y también como la serie:

Además, Euler es muy conocido por su análisis y su frecuente utilización de la serie de potencias, es decir, la expresión de funciones como una suma infinita de términos como la siguiente:

Uno de los famosos logros de Euler fue el descubrimiento de la expansión de series de potencias de la función arco tangente. Su atrevido aunque, según los estándares modernos, técnicamente incorrecto uso de las series de potencias le permitieron resolver el famoso problema de Basilea en 1735,23 por el cual quedaba demostrado que:


Interpretación geométrica de la fórmula de Euler.
Euler introdujo el uso de la función exponencial y de los logaritmos en las demostraciones analíticas. Descubrió formas para expresar varias funciones logarítmicas utilizando series de potencias, y definió con éxito logaritmos para números negativos y complejos, expandiendo enormemente el ámbito de la aplicación matemática de los logaritmos.24 También definió la función exponencial para números complejos, y descubrió su relación con las funciones trigonométricas. Para cualquier número real φ, la fórmula de Euler establece que la función exponencial compleja puede establecerse mediante la siguiente fórmula:

Siendo un caso especial de la fórmula lo que se conoce como la identidad de Euler:

Algunos de los mayores éxitos de Euler fueron en la resolución de problemas del mundo real a través del análisis matemático, en lo que se conoce como matemática aplicada, y en la descripción de numerosas aplicaciones de los números de Bernoulli, las series de Fourier, los diagramas de Venn, el número de Euler, las constantes e y π, las fracciones continuas y las integrales. Integró el cálculo diferencial de Leibniz con el Método de Fluxión de Newton, y desarrolló herramientas que hacían más fácil la aplicación del cálculo a los problemas físicos. Euler ya empleaba las series de Fourier antes de que el mismo Fourier las descubriera y las ecuaciones de Lagrange del cálculo variacional, las ecuaciones de Euler-Lagrange.
Hizo grandes avances en la mejora de las aproximaciones numéricas para resolver integrales, inventando lo que se conoce como las aproximaciones de Euler. Las más notables de estas aproximaciones son el método de Euler para resolver ecuaciones diferenciales ordinarias, y la fórmula de Euler-Maclaurin. Este método consiste en ir incrementando paso a paso la variable independiente y hallando la siguiente imagen con la derivada. También facilitó el uso de ecuaciones diferenciales, en particular mediante la introducción de la constante de Euler-Mascheroni:

Por otro lado, uno de los intereses más llamativos de Euler fue la aplicación de las ideas matemáticas sobre la música. En 1739 escribió su obra Tentamen novae theoriae musicae, esperando con ello poder incorporar el uso de las matemáticas a la teoría musical. Esta parte de su trabajo, sin embargo, no atrajo demasiada atención del público, y llegó a ser descrita como demasiado matemática para los músicos y demasiado musical para los matemáticos



No hay comentarios:

Publicar un comentario